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1. INTRODUCTION

A distributed computer program is often a collection of asynchronous,

sequential processes that occasionally synchronize or communicate. One

trend in modeling such programs is to develop techniques powerful enough

to model arbitrarily large programs. Queueing network models [5] and

performance Petri nets [6] are principal techniques.

A complementary approach Is to model small, elementary programs in

exchange for the ability to perform the analysis exactly. Analytic formulae

describing the exact run-time behavior may give fundamental insights into

how synchronization affects distributed program performance. Such is the

approach of this paper. We start by explaining the elementary type of

program studied here.

2. PROGRAM MODELED

Consider a program consisting of two processes, each of which is executed

by an asynchronous, dedicated processor. Both processes share a single

resource, in a manner to be described shortly. Each process repeats forever

the following sequence of two local states:

(1) perform operations not requiring the resource (state 0);

(2) perform operations requiring the resource (state 1).'

The state name denotes the number of resources the process is using.
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The length of time the process spends in each state is a known, positive,

real quantity. The sum of the time process 1 spends in states 0 and 1 is

denoted c1.2 We define c2 for process 2 similarly. The time process 2 uses

the resource, i.e., the time of state 1, is denoted by I E (0, c2). Variables c1 ,

c2 , and I are real quantities.

One way in which resources could be shared is mutually exclusively:

neither process enters state 1 and uses the resource, when the other

process is in state 1. This case is analyzed in [1], and requires a numerical

algorithm to obtain the solution. The algorithm permits only an empirical

understanding of the solution.

In this paper, we analyze the more restrictive case of unilaterally-

exclusive resource sharing to obtain a closed-form solution., The closed form

exposes the functional dependence of behavior on parameters c1, c2 , and I.

In unilateral resource sharing, only one of the processes obeys the protocol

of not entering state 1 when the other process is already in state 1.

However, unlike mutually-exclusive sharing, the other process ignores the

protocol and uses the resource whenever it wishes. Let process 1 obey the

protocol, and process 2 use the resource at will.

Two unilaterally-exclusive resource users together produce mutually-

exclusive resource use. Thus, the analysis of unilaterally-exclusive resource

use is a fundamental problem.

2 Quantity c1 may also be thought of as the time required to execute one cycle of process 1 excluding
the time spent waiting for the resource.

SThe solution obtained is In dosed form to the extent that the expression contains a parameter which
is the solution of a linear congruence, and closed-form solutions to congruences are not known,



3. ANALYSIS PROBLEMS

Each time process 1 completes execution of state 0, it may need to wait

before it can use the resource, and thus enter state 1. The overall problem

in this paper is to determine the functional dependence of the waiting time

on the length of time process 2 uses the resource (i.e., I). This function is

denoted w(l); its domain and range are the real numbers. We shall show that

the domain of w(l), which is [0, c2), may be partitioned into a set of intervals.

Function w is constant within each interval, but discontinuous at interval

boundaries.

The global state of a program consists of the local state of all processes.

We describe the execution behavior of a program by enumerating the

sequence of

(1) global-state transitions occurring during execution, and

(2) occupancy times, or time spent in each global state.

A program is in steady state when it repeats a finite sequence of global

states and occupancy times forever. The time required for each repetition of

the sequence is called the steady-state period.

In this paper, we find for every program fitting our model

(1) a proof that every program reaches a steady state;

(2) the steady-state period;

(3) the necessary and sufficient conditions for a process to wait for a

resource, given rational cycle times c1 and c2; and

*1..



(4) an expression for w(l), the time a process waits each time it uses the

resource, based on four conjectures about the form of w.

Our chief analytic difficulty is that we only know the global state at the

moment both processes start execution. The asynchronous nature of the

processes precludes a priori knowledge of the global state at any later time.

Therefore, we cannot apply results from scheduling theory [2], critical path

analysis [2], the performance of flexible manufacturing systems [3], and

related fields that analyze the time at which a deterministic sequence of

state transitions occurs.

4. STEADY-STATE EQUATION

In this section, we analyze the steady-state program behavior. The two

processes of a distributed program may be started at two different times.

These two times form the initial condition of the program. First, we shall

discuss why any program reaches steady state regardless of the initial

condition. Then we derive the condition under which one process waits for

the resource In steady state.

When a program starts execution from any initial condition, one of two

mutually-exclusive cases occurs:4

CASE 1. Process 1 never waits for the resource.

CASE 2. Process I waits at least once for the resource.

Note that process 2 never waits by definition or unilateral sharing.

'k19~



Consider case 1 first. Because no process waits, process 1 repeats its state

transitions every c1 time units, and process 2 repeats every c2 units.

Therefore, the moment both processes have started, the program is in steady

state. Further, the steady-state period is clc 2 time units.

Next, consider case 2. Without loss of generality, let time zero be the

moment process 2 releases the resource (leaves state 1), thereby permitting

process I to enter state 1. The p:ocesses progress in time as shown in

Figure 1. Looking at the progress of process 2 in Figure 1, the resource is

unavailable to process 1 during time intervals [c 2 - I, c2), [2c2 - I, 2c2) ,

[3c 2 - I, 3c2 ) .... Meanwhile, process 1 will start using the resource at times

0, c1 , 2cl, 3c 1, ... until some time that is an integral multiple of c1 and lies

within the Interval when process 2 uses the resource. Therefore, process 1

will wait for the resource if and only if

3iEI, 3je- = ic1  [jc2 -1, jc2) , (1)

where I denotes tie positive integers. The smallest i and j satisfying (1)

represent the number of loops processes 1 and 2 make, respectively, before

process 1 waits.

If (1) Is satisfiable, the system will return at time jc 2 to the state it was in

at time 0. Thus, its behavior will repeat, so that (1) represents the

steady-state behavior. Alternately, if (1) is not satisfiable, a desirable

situation will occur In which process 1 waits exactly once, after which the
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processes use the resource without conflict and without waiting. This is a

steady-state behavior because the state at time 0 is returned to at time cIc 2.

Thus, we have:

Theorem 1. A two-process distributed program in which process 1

unilaterally shares a resource with process 2 will always reach a steady

state. Let the cycle times be cl and c2. If waiting occurs, the steady-state

period will be jc2, where j is the smallest, positive integer satisfying (1).

Otherwise, neither process waits for the resource, and the period is cIc 2.

Expression (1) is equivalent to the condition that process 1 will wait if

and only if

3iGl, 3jEl, 3xE(0,I] = Ic1 - jc 2 + x = 0 . (2)

Equation (2) will either have no solution or an infinite number of solutions

[4]. However, the solution corresponding to the program behavior is the

minimum positive integers i and j satisfying (2), for the following

reason: The first time process 1 leaves state 0 and the resource is in use,

process 1 will wait. This corresponds to the minimum number of loops each

process makes before contending for the resource, and hence the minimum

positive Integers I and I satisfying (2).1

s Larger, positive values of i and j correspond to physically unrealimnhle situations, in which the
first n (n > 0) times process I leaves state 0 and the resource is in use, process I illegally uses the
resource without waiting.

~ ... L
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By definition, w(l) is the value of x which satisfies (2) when the

minimum values of I and j are substituted.

Solving equation (2) presents three problems:

(1) obtaining the condition under which a solution exists;

(2) allowing only integer values for the solution of variables i and j,

and;

(3) finding the minimal values of I and I satisfying (2).

The first two problems are solved below by transforming (2) to a

Diophantine equation,' and applying known methods. However, the third

problem is difficult. To our knowledge, finding minimum integer solutions

analytically is not addressed in the literature. Solutions to these problems

are presented next.

Earlier, we defined c1 and c2 to be real quantities. For the following

analysis, we shall assume that c1 and c2 are rational quantities.' Henceforth,

we shall equivalently assume that c1 and c2 are relatively prime integers.

To demonstrate the equivalence, we can multiply each term in (2) by the

factor L/G, where L is the least common denominator of c1 and c2, and

G Is the greatest common divisor (g.c.d.) of cI and c2 . The resulting

solution to i, J, and x in (2) must be multiplied by G. Finally, I must be

divided by L.

6 A Diophantine equation has integer coefcients and unknowns, as discussed in [4].

7 The subsequent results do not apply to processes whose cycle time is irrational. Although this ca.te is
theoretically interesting, in practice we measure programs using only rational numbers (e.g., all
measurements have a precision of one microsecond).
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Because quantities i, j, c1 , and c2 are integers, x must only have integers

as Its range. Thus, equation (2) may be considered to be a Diophantine

equation [4].

Now, In the following theorem and corollary, we may answer a question

of practical Importance:

How can we design a two-process, deterministic program to unilaterally

share a resource without conflict in steady state?

We seek the condition under which the periods of resource use of the

two processes are interleaved in such a way that neither process waits in

steady state.

Theorem 2. Consider a two-process distributed program in which process

1 unilaterally shares a resource with process 2, and whose cycle times c1

and c2 are rational quantities. At steady state, neither process will ever wait

for the resource if and only if the duration for which process 2 uses the

resource (i.e., I) is less than the g.c.d. of c1 and c2.

Proof. The definition of unilateral sharing only permits process 1 to wait.

Process 1 waits if and only if Diophantine equation (2) has a solution.

Theorem 3.3 in [4] gives the condition for solution:

A necessary and sufficient condition for the Diophantine equation

a1z1 + a2z 2 + ... + anZ n = k to have a solution is that the greatest

common divisor (g.c.d.) of the ai's divides k.
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Let c denote the g.c.d. of cl and c2. If we consider for a moment x

to be an integer constant k, then by the above theorem equation (2) has a

solution If and only If c divides k. Now k, or equivalently x, assumes

any Integer In the range (0, I]. Thus, equation (2) has a solution if and only if

lc. 0

Corollary. If a two-process distributed program unilaterally sharing a

resource has equal cycle lengths (c, = c2), then the steady state never

requires either process to wait for the resource.

Proof. Neither process waits if and only if equation (2) has no solution.

A solution exists If and only if the g.c.d. of c1 and c2 , which Is c2 , divides

some integer in the range (0,1]. Because the time a process spends in state

0 and 1 must be positive, I < c2. Thus, no such integer exists. C

Next, we find all solutions to (2). Using the technique described in [4],

page 66-68, the infinite number of solutions to (2) are

i= c2y + tx (3a)

= =cly + rx , (3b)

where y can assume any integer value and r and t are any integers

satisfying'

c2r - cit = 1I (3c)

A solution to (3c) may be round by solving the rollowing linear congruence hy known method t
c = I (mod c,).

- .
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The value of x that minimizes I will also be the value minimizing i

(refer to Figure 1). Henceforth, we need only analyze (3a). Parameter y

may be eliminated by using conditions i 0 and j 0. Combining these with

(3a) and (3b) yields

C2  C1

From (3c). the first term in the maximum is larger Using the notation LxJ

to represent the largest integer that is less than or equal to x. and

substituting into (3a) yields

1= tx - c2[I- L&J (4)
C2

This is equivalent to

i= (tx mod C2 ) (5)

5. EXPRESSION FOR FUNCTION w(l)

To find the steady-state waiting time w(l), we started in equation (2) by

seeking the minimum number of loops each process makes before resource

contention, denoted I and 1. Knowing these. wAI) is the corresponding

resource waiting time x We transformed this problem Into (5). which says
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that wl) is the value x E (0,1] minimizing I. This minimum is investigated

below to develop an expression for w(l).

First, observe that w(l) is a step function. To see this, suppose the value

of I Is the constant 1o . Then the value w(Io) is the integer in the range (0, 10]

minimizing I in (5). If I Is Increased to to + Al , where Al is a real

number In (0, C2 - 10) , then w(1o + Al) may still be equal to wI o ) This

occurs if and only If (tx mod c2) >(tw(10 ) mod C2), Vx L (1
0 , 10 + Al] Thus. w(l)

is a step function.

The crucial problem is to determine the critical points of w, or those

values of I at which w is discontinuous. A critical point is defined to be an

integer c L (0,c 2] such that (tc mod c2) < (tz mod c2 ), Vz = 1.2.....c. We shall

define 0 to be a critical point, as a convenience in our derivation. Thus, the

critical points are the successive minima In a graph of I versus x. as we

scan the graph from x = 0 to x = c2 ,

Example. Despite Its simple appea;ance, function i = (tx mod C2 )

generates a rich variety of functions, as illustrated in Figure 2. Henceforth,

we only use the case of c1 =29, c2 =50 (Figure 2b) for illustrating the

conjectures. An example of the function w is illustrated in Figure 3,

corresponding to Figure 2b. The critical points occur at 0, 1, 2, 5. 13, 21, and

50.

To find the critical points, we make four conjectures about the form of

function (tx mod c2). The resultant expression has been successfully

.,.~~~~ 61Av.'-, 'YV' .L VL - 4
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compared to the numerical evaluation of critical points by testing all values

of x L (0, C2 ] In (5) at numerous values of c1 and c 2.'

Conjecture 1. In a graph of I versus x, the critical points lie on one

of a sequence of S line segments, where S is a positive integer If S > 1.

each line segment a e [1.2. S - 1] shares an end point with line segment

5+ 1.

- One end point of segment 1 is not shared with any other segment It is

the point x ,0, i - c.

- One end point of segment S is not shared with any other segment It

is the point x= C2. i-O

Example. Consider the graph of equation (5). in Figure 2b Its critical

points (x-O, 1. 2, 5, 13. 21. 50) lie on S = 4 line segments, as illustrated in

Figure 4 Points x = 0, i = 50 and x= 2. i= 12 are the end points of segment

9= 1, and points x =2,1 = 12 and x 5, i = 5 are the end points of segment

s-2.

Conjecture 2. On any single line segment, the difference betweer the

x-coordinates of any two consecutive critical points 1s the same

The two conjectures suggest describing the critical points along a single

line by three integers m. ns, and e, The x-axis distance between two

r! consecutive critical points Is denoted m. We denote by n. + 1 the number of

Sped'9ally, we ,-eed ll ineger combinations of c, m the range (1(,M] and all c, in the range
( [).100). Th en tw. sed a l nteger combina.on. or c, the rsinge ol [ I (M. IIn] OnI and all cIn the
range o( [I)001. 14M0) Finally. we tested atwiul Vf random poinL'. for which we cnnstru(ted and
audied graphs of i versus i m the proces o( formulting our (onlec-tureq Tese random 'alites
were m thrae caltegreM c'. €a V li.). c, a On[l.fi]. and c a [100c,1101)0f

"i ' 'I " .. . " 1 .' ' ' -: -, , .,.49 ,. - " . h ".'' ,, q$'', .,, "" ' .. ,
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critical points along line segment s.1 Finally, the x coordinate of the

rightmost end point on line segment s is denoted ea.

Example. Returning to Figure 4, the rightmost end points are e1 = 2,

02 = 5, •3 = 21, and e4 = 50. The number of critical points on each segment

is n1 + 1=3, n2 + I =2, n3 + 1=3, and n4 + 1 -2. Finally, the distance

between successive critical points on the first line segment (x=0,1,2) is

m1 = 1, and on the remaining line segments m2 = 1, m 3 = 8, and m 4 = 29

If we knew how to calculate m, n., and e. for se [1.S], then we could

find all critical points and hence function w(l). The remaining two conjectures

describe how to overlay a graph of (4) with a grid to calculate

M., n., and a

Coneodur 3. It is possible to draw two sets of parallel lines on a graph

of I versus x such that the intersection points are exactly all points in

the graph of equation (5) One set of lines has positive slope and the

second set negative slope Further. the parallel lines of each set are drawn

with equal spacing between them

Example The parallel lines of Conjecture 3 form a grid as illustrated for

the case of c, = 29 c2 = 50 in Figure 5 The parallel lines in each of the two

sets are assigned consecutive integer numbers, denoted u and v. as

illustrated in Figure 5

Coectum 4. If we know the critical points along segment s (for 1 s

< 5). we can find the slope of line segment s + 1 by drawing the grid of

' Me critical point epreasmn iveri a the end of this sction is simplified h chonoinp n, * I. rather

than n, to relpeeent the numtew o( critical poinb along selment q

p.N
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Conjecture 3 In the following manner: The lines of negative slope are drawn

with the line u =1 containing line segment s. The lines of positive slope are

drawn with the line v=O passing through the origin and through the

rightmost end point of line segment s. The slope of line segment s+ 1 is

determined by two points:

(a) One point is the intersection of lines v=O and u 1

(b) The other point is the intersection of v= 1 and the leftmost

intersection of v-1 with any line u.

Example. Figure 5 illustrates the application of Conjectures 3 and 4 to

find the critical points along segment s + 1 = 2. The lines of negative slope

are drawn parallel to line segment s - 1 The lines of positive slope are

drawn with the line v = 0 passing through the origin and the rightmost end

point of segment a = 1, which is x = 2, i = 12. This point is also one end

point of line segment 2, by A above Further, by B above, another point

on segment 2 lies on the line v = 1 In particular, it lies at the intersection of

v = I with u = 2. because there is no line with a smaller value of u that

intersects line v = I Thus, points x = 2. i = 12 and x = 5. i = 5 determine the

slope of line segment 2. these points are indicated by the two shaded black

boxes in Figure 5

Using Conjectures I and 4, we can obtain the number of critical points

along line segment s (i e. n. + 1) and hence the rightmost end point e. in

the following manner Conlectures 4 (a) and (b) describe how to find the two

leftmost points on line segment s. and hence its slope We can draw a line

• i 3 .'"' " ". -- 3- *' * *
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A through the points specified In Conjectures 4 (a) and (b); thus it contains

line segment s. By elementary geometry, we calculate where A intersects

the x-axis. From Conjecture 2, we know that the distance between

consecutive critical points along line s is the constant ms . Thus, we can

calculate the maximum number of points which will fit on the portion of A the

line through segment s above the x-axis, which is ns + 1.

Example. In Figure 5, we can calculate n2 + 1 as follows. Line segment 2

has slope -7/3. Thus. a line A containing segment 2 has equation

- = 50/3 - 7/3x (see Figure 6). Line A intersects the x-axis at x - 7 1/7. The

two critical points known from Conjectures 4 (a) and (b) occur at x = 2 and

x = 5; therefore by conjecture 2, m2 = 3. If there were more critical points on

segment 2, they would have to occur at x = 8, 11, 14,.... However, because A

intersects the x-axis at x - 7 1/4, no critical points can have a value larger

than 7 1/4.

To summarize, the general procedure for calculating the critical points

presented in this section is:

(1) Set s = 1. Calculate the end points of line segment 1

(2) Increment s

(3) Use Conjecture 4 to calculate two points on line segment s + 1

Set ms + 1 to the difference between the x coordinates of the two

points (Figure 5)

(4) Based on the previous step. we calculate the rightmost end point of line

segment s + I (i a, 0,+,) and the number of critical points on line
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segment s +1 (i.e., n8 +1) (Figure 6)

(5) Steps 2 through 4 are repeated until we generate C2 as the rightmost

end point of some line segment (i.e., es = CO). The number of segments,

S, is set to the current value of s.

This procedure yields the expression shown below. eh derivation is

discussed in the Appendix.

Critical-point expression. Consider a two-process distributed program in

which process I unilaterally shares a resource with process 2. Let

1(x) = tx mod c2, 5 E [1, S],k cz [1, nj] At steady state, the resource waiting

time w(I) will be

WMi = es- + msk

where:

msWs2 e-I .I if 5=1I (6a)
= 5- r1 n.2)- Ie,_% ,) .. 1  + m,. 1  otherwise (6b)

_ 2 IC2 t j if 8= 1 (7a)

le , 2  as- I We,_,..) n,.- I(e 1 I otherwise (7b)
s-I We - Os.. 2 1e 1)- ms ns-...j ,)

9

s = Znk Mk (8)
k- I

S satisfies es ==C 2 (9)
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f(eo) is defined to be c2

and s and k are integers chosen to satisfy

[es-1 + msk, es) if k=n s

I [es_ 1 + msk, es_ 1 + ms(k + 1)) if k <n s

6. IMPLICATIONS OF ANALYSIS

We obtained two results. First, we showed that all programs fitting our model

reach a cyclic steady state. Next, we derived an expression for w(Q), the

waiting time of process 1 as a function of how long process 2 uses the

resource. As illustrated in Figure 3, qualitatively w(l) Is a step function, with

the width of each step Increasing with I. These results have the following

implications:

(1) The waiting time w(l) is monotonically increasing. Therefore, a program

should have short resource-use durations to minimize the waiting time.

We proved that the limiting case of zero waiting time occurs when the

resource-use duration is less than the greatest common divisor of the

cycle lengths of the two processes.

(2) We define a program as being unstable if a small change in the

resource use duration causes the waiting time to cross a discontinuity,

thereby sharply increasing or decreasing. (For example, a program

operating at 1=3 In Figure 3 Is unstable.) The space between

discontinuities In w(l) grows as I grows. This Implies that a program is
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stabler if its resource-use duration is long. With increasing I, the

likelihood that the program is near a discontinuity decreases.

(3) No waiting occurs during the transient period, before the program

enters steady state." If the program only needs to run for a finite period

of time, we can try to make the transient as long as possible, by

decreasing I, to avoid contention. The transient duration increases to a

maximum of Cl'C 2 as I shrinks to the g.c.d. of c1 and c2."

This work has a broader implication for modeling deterministic distributed

programs in general: the program displays potentially unpredictable behavior

for small changes in parameters. This contrasts with continuous systems,

such as electrical circuits modeled by a differential equation. A nice property

of continuous systems Is that whenever a parameter of the system is

changed slightly, the output behavior changes In a smooth, predictable

manner.

For example, consider the following enumeration of critical points using

the expression developed for w(l):

11 Processes enter steady state the first time they contend for the resource; therefore no resource
contention occurs during the transient.

12 Graphs of equation (5) of I versus x in Figure 2 illustrate that the number of loops, i, assumes
values corresponding to the successive minimums of f(x) - tx mod c . Thus a small value of I
assures that x e (0,1] will correspond to a large value of i. The maximum tranmienw period is, by (5),
F. loops of process I. Because process I makes one loop in time c,, the maximum transient duration
is time c,.c2 .
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ci c2  critical values of I at which steady-state cycle changes

77 90 1 13
77 91 7 14
77 92 1 3 5 7 9 11 13 15
77 93 1 2 3 16

If a programmer is running the program with c1 = 77 and c 2 = 91, then,

depending on whether the value of I chosen lies in the region

I e [0,7), [7,14), or [14,90), one of three steady-state behaviors will appear.

But if c2 is increased by just 1, suddenly nine regions of I will emerge,

corresponding to nine alternate steady-state behaviors. The region [0,7) is

now split into four regions, and region [7,14) is divided into three regions. If

C2 is again increased by one, the number of regions will shrink to five.

The erratic change in number of regions suggests how complex the

microscopic behavior underlying some distributed systems may be. This

raises the question of whether distributed programs whh more processes

and resources are more or less erratic. Experimental results in [1] suggest

that aggregation of many microscopic discontinuities blends into a system

which macroscopically displays relatively few points of discontinuity. This is

encouraging for further analysis.

-i,

•%
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7 APPENDIX

Summarized below is the erivation of expressions for the distance between

critical points (ms) and the number of critical points (n,+ 1 ) for each line

segment s. The complete derivation appears in [1]. First, we shall consider

line segment s= 1 and derive (6a) and (7a). Later, we shall derive (6b) and

(7b), for s > 1, by carrying out the five-step procedure given in Section 5.

A.1. Critical Points on Line Segment s=1

In Conjecture 1, we defined one end point of line segment s = 1 to be the

point x = 0, i = c2. By definition x = 1, i = t is a critical point. Thus, the slope

of line 1 is - (c2 -t)/1, and m 1 = 1. Now we want to know how many critical

points x = 2, 3, ... i n1 also lie on this line.

One way to view function f(x) = tx mod c2 is as a graph of tx "folded

over" on itself every c2 units (Figure 7). Horizontal lines are drawn in the

figure at integral multiples of c2. The values of f(x) may be derived

graphically using Figure 7 by calculating, for each x, the distance from tx to

the previous multiple of c2. We can show that

[[-X-j + 1 if x is a critical pointt(x + 1) C

c2 [t(Al

Sotherwise
C2 2

In terms of Figure 7, the point x = 2 is critical, while 3 is not, because

L 7.3/11 J = L 7.2/11 J. This gives us a condition for finding the smallest
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critical points: the points 1,2,...,n sub 1 are critical, where n1 + 1 is the

smallest integer for which Lt(nj + 1)/c 2J - Ltn1/c 2J. Because (4) is

equivalent to (5), f(x) = tx - c2 Ltx/c 2J. Thus, at x = n1 + 1

f(x) - t(n1 + 1) - c2 Lt(n2 + 1)j~C2

Substituting (Al) yields

f(x) = t(n, + 1) - c2(n 1 - 1) (A2)

Because 0 f(x) < c2, substituting (A2) for f(x) and solving for n1 yields (7a).

A.2. Critical Points on Line Segments s > 1

Now we proceed to the case of s > 1. First, we obtain an invertible relation

between f(x) = tx mod c2 and parameters u and v

f(x) = afu + bfv
(A3)

x = ax u + bx v

To determine parameters af, bf, ax , and bx , we need two points, other than

the origin, for which the u and v parameters are known. Lines u = 1

and v = 0 always pass through the critical point at x = es-1:

A
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es_1) = an-1 + br-0
(A4)

es_1 = aw1 + bw-O

The lines u= 1 and v =-ns 1 always pass through the critical point at

x = es_2:

es_2) = af -1 - bf ns_ 1
(A5)

es 2 = ax 1 + bxO.

Solving (A4) and (A5) for af, bf, ax , and bx , and then substituting into (A3)

yields the desired relation

f(esl-- fes_ 2)f(x) = f(es.l)u + vse 1  (A6a)

x = es-lu + mslv (A6b)

Using (A6) with the conjectures, we shall find expressions for ms and ns.

First, we obtain two functions which simplify the derivation: u(v) and x(v).

Suppose we wish to find the critical points along line segment s. Each

critical point lies on lines v = 1,2,...,ns, at the point with the minimum f(x)

value. Function u(v) Is defined to be the value of u such that the

intersection of v and u(v) is the point with the minimum f(x) value along
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line v. We can find u(v) from the condition that f(x) 0. We substitute (A6a)

for f(x), then solve the Inequality for u(v). The minimum integer satisfying the

inequality Is

fK) es-2) - kes-1I) v] (A7)
u(v) = jvns-(es-A)

Function x(v), when given a value v on which a critical point lies, yields

the x coordinate of that critical point. This function is (A6b) with function

u(v) substituted for u:

x(v) = es_ 1  ns-2) -+f(e-
1ns-1fes-1) I

Next, we obtain the expression for ms, the spacing between two critical

points on the same line segment, by subtracting the x coordinates of two

adjacent critical points on line segment s. Each line segment contains a

critical point at Its leftmost end point (x = es- ). Further, the line v 1 must

pass through another critical point. Function x(v), evaluated at v = 1. yields

the x coordinate of this point. Thus, the difference between two critical

points on line s Is

ms = x(1) - es_ 1

V V ,:
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Substituting (A7) for x(v) and simplifying yields

m s = es SI e.-.. .. e - ) I + ms- IV[ ns - We sI) ]

Finally, we find an expression for n., Each line segment containing critical

points has a negative slope Thus, if we fix v and choose u too large in

(A6a), then a negative value of f(x), as defined in (A6a), results Thus we

can find the number of critical points along line s by finding the largest

integer ns for which Ax) 0 Substituting (A6a) yields

l es-jn s ) + n. 0 (A8)

We can eliminate u(ns) by solving (A6b) for u Further, Ahe x coordinate

of the rightmost critical point along line s must be greater by nsms than

the leftmost critical point on line s. at x = es_1 Thus,

LOS) = nsm s  + es_1  - n's2n s

es- 
1

Substituting the above in (AB) and solving for n. yields
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e.- . s 1
n. = [e)m ms)ns_l - e,_] + es_,fes_2)1

Substituting es_2 for ms_Insl - e,_, yields (7b).

I.,

I I*: '
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